

Ontario Clean Water Agency Agence Ontarienne Des Eaux

### Matachewan Drinking Water System

# 2020 ANNUAL/SUMMARY REPORT

Prepared by the Ontario Clean Water Agency on behalf of the Township of Matachewan

### TABLE OF CONTENTS

| INTRO   | DUCTION                                                                                                           | .1  |
|---------|-------------------------------------------------------------------------------------------------------------------|-----|
| Section | 11 - ANNUAL REPORT                                                                                                | .2  |
| 1.0     | INTRODUCTION                                                                                                      | .2  |
| 2.0     | MATACHEWAN DRINKING WATER SYSTEM (DWS No. 220003653)                                                              | . 3 |
| 3.0     | LIST OF WATER TREATMENT CHEMICALS USED OVER THE REPORTING PERIOD                                                  | . 5 |
| 4.0     | SIGNIFICANT EXPENSES INCURRED IN THE DRINKING WATER SYSTEM                                                        | . 5 |
| 5.0     | DETAILS ON NOTICES OF ADVERSE TEST RESULTS AND OTHER PROBLEMS REPORTED TO & SUBMITTED TO THE SPILLS ACTION CENTER | . 6 |
| 6.0     | MICROBIOLOGICAL TESTING PERFORMED DURING THE REPORTING PERIOD                                                     | . 6 |
| 7.0     | OPERATIONAL TESTING PERFORMED DURING THE REPORTING PERIOD                                                         | . 7 |
| Schedu  | le 22 - SUMMARY REPORTS FOR MUNICIPALITIES                                                                        | 13  |
| 1.0     | INTRODUCTION                                                                                                      | 13  |
| 2.0     | REQUIREMENTS THE SYSTEM FAILED TO MEET                                                                            | 13  |
| 3.0     | SUMMARY OF FLOWS AND COMPARISON TO REGULATORY LIMITS                                                              | 15  |
| CONCL   | USION                                                                                                             | 21  |

### List of Figures

Figure 1 – 2020 – Comparison of Treated Water Flows to the Rated Capacity Figure 2 – Historical Water Usage Trends (2016 to 2020)

### List of Appendices

APPENDIX A – Monthly Summary of Microbiological Test Results APPENDIX B – Monthly Summary of Operational Data

#### INTRODUCTION

Municipalities throughout Ontario have been required to comply with Ontario Regulation 170/03 made under the *Safe Drinking Water Act* (SDWA) since June 2003. The Act was enacted following recommendations made by Commissioner O'Conner after the Walkerton Inquiry. The Act's purpose is to protect human health through the control and regulation of drinking water systems. O. Reg. 170/03 regulates drinking water testing, use of licensed laboratories, treatment requirements and reporting requirements.

Section 11 of Regulation 170/03 requires the owner to produce an Annual Report. This report must include the following:

- 1. Description of system & chemical(s) used
- 2. Summary of any adverse water quality reports and corrective actions
- 3. Summary of all required testing
- 4. Description of any major expenses incurred to install, repair or replace equipment

This annual report must be completed by February 28th of each year.

Schedule 22 of the regulation also requires a Summary Report which must be presented & accepted by Council by March 31<sup>st</sup> of each year for the preceding calendar year.

The report must list the requirements of the Act, its regulations, the system's Drinking Water Works Permit (DWWP), Municipal Drinking Water Licence (MDWL), Certificate of Approval (if applicable), and any regulatory requirements the system <u>failed to meet</u> during the reporting period. The report must also specify the duration of the failure, and for each failure referred to, describe the measures that were taken to correct the failure.

The *Safe Drinking Water Act* (2002) and the drinking water regulations can be viewed at the following website: <u>http://www.e-laws.gov.on.ca</u>.

To enable the Owner to assess the rated capacity of their system to meet existing and future planned water uses, the following information is also required in the report.

- 1. A summary of the quantities and flow rates of water supplied during the reporting period, including the monthly average and the maximum daily flows,
- 2. A comparison of the summary to the rated capacity and flow rates approved in the systems approval, drinking water works permit or municipal drinking water licence or a written agreement if the system is receiving all its water from another system under an agreement.

The reports have been prepared by the Ontario Clean Water Agency (OCWA) on behalf of the Owner and presented to council as the 2020 Annual/Summary Report.

Matachewan Drinking Water System

# Section 11 2020 ANNUAL REPORT

#### Section 11 - ANNUAL REPORT

#### **1.0 INTRODUCTION**

| Drinking-Water System Name:     | Matachewan Drinking Water System              |
|---------------------------------|-----------------------------------------------|
| Drinking-Water System No.:      | 220003653                                     |
| Drinking-Water System Owner:    | The Corporation of the Township of Matachewan |
| Drinking-Water System Category: | Large Municipal, Residential System           |
| Period being reported:          | January 1, 2020 to December 31, 2020          |

Does your Drinking Water System serve more than 10,000 people? No

Is your annual report available to the public at no charge on a web site on the Internet? Yes at <a href="http://www.matachewan.com/">http://www.matachewan.com/</a>

Location where the report required under O. Reg. 170/03 Schedule 22 will be available for inspection.

Matachewan Township Office 1 Moyneur Avenue, Matachewan Ontario POK 1N0

## Drinking Water Systems that receive drinking water from the Matachewan Drinking Water System

The Matachewan Drinking Water System provides all drinking water to the community of Matachewan.

#### The Annual Report was not provided to any other Drinking Water System Owners.

The Ontario Clean Water Agency prepared the 2020 Annual/Summary Report for the Matachewan Drinking Water System and provided a copy to the system owner; the Township of Matachewan. The Matachewan Drinking Water System is a stand-alone system that does not receive water from or send water to another system.

## Notification to system users that the Annual Report is available for viewing is accomplished through:

- Notice on the Town's website
- Notice in the Town's News Letter

#### 2.0 MATACHEWAN DRINKING WATER SYSTEM (DWS No. 220003653)

The Matachewan Drinking Water System is a communal ground water well supply that services the Town of Matachewan. It is owned by the Corporation of the Township of Matachewan and is operated by the Ontario Clean Water Agency (OCWA). The system consists of Class 1 water treatment subsystem and a Class 1 water distribution subsystem. OCWA is the accredited operating authority and is designated the Overall Responsible Operator for both the water treatment and water distribution facilities.

#### Raw Water Supply

The water treatment system obtains its water from two production wells with a combined allowable daily volume of 908 m<sup>3</sup>/day. The wells are located at 391 Bernard Street, adjacent to the Montreal River. The well head assembly for Well 1 is located within the main building for the water treatment plant while the well head assembly for Well 2 is located outside adjacent to the water treatment plant building. Both wells consist of a 150 mm diameter steel casing; Well 1 is drilled to a depth of 39.6 m and Well 2 is drilled to a depth of 55 m. Well 1 is equipped with a 30 hp vertical turbine pump assembly and a variable frequency drive (VFD) to pump at a maximum rate of 20 L/s. Well 2 is equipped with a 30 hp submersible pump (VFD compatible) rated at 20 L/s. Each well is equipped with a magnetic flow meter installed in a 150 mm diameter line that directs water into the treatment process. Also included are pump-to-waste capabilities from a common pump discharge line.

#### Water Treatment

The wells feed the water treatment plant that has a maximum rated capacity of 908 cubic meters per day  $(m^3/d)$ . The wells operate on an alternating basis but can be adjusted as required.

The plant is controlled by a programmable logic controller (PLC) which communicates with the elevated water storage facility (EWSF) to control the plant start and stop cycles. There is a set point for both wells to prevent them from running more than the permit to take water allows. When the set point is reached, the operational well shuts down and the other well takes over.

The raw water discharges to a combined header in the water treatment plant which is directed to a Filtronics Inc. iron and manganese removal filtration system consisting of two reaction vessels fed with sodium hypochlorite and one pressure filter rated at 10.5 L/second. The filter is filled with Filtronic's Electromedia<sup>®</sup>, a proprietary media. Sodium hypochlorite solution is injected at the raw water header before the first reaction vessel to oxidize the iron and manganese so it can be removed by the filtration system and provide primary disinfection. The sodium hypochlorite system consists of duplicate chemical pumps (one duty, one back-up) with automatic switchover and a 400 L double walled chemical tank.

The filter is automatically backwashed, prior to shutdown to clean contaminants from the media. Manual backwashes can also be initiated when required. The backwash water is

pumped from a 22,700 L underground backwash water storage tank and the wastewater is discharged to the backwash reclaim water tank. A typical backwash time is four (4) minutes.

The system will also go through a purge cycle prior filtration when there is a call for water or after a backwash cycle if the call for water signal is still on. This step allows the filter to reform. Discharge water from the purge cycle goes to the reclaim tank. Normal purge time is from 1 to 10 minutes.

The backwash and purge discharge water stored in the reclaim tank are blended with raw well water to be reprocessed through the filter during filtration mode. The reclaim pump is rated at 1.04 L/second and when in operation, the reclaim water is continuously monitored for turbidity to ensure it will not cause fouling of the media. Settled sludge from the reclaim tank will be removed via hauling truck when needed.

Filtered water is continuously monitored using free chlorine residual analyzer that is alarmed and is measured by an in-line magnetic flow meter before entering the underground chlorine contact chamber pipe. The 23.87 m<sup>3</sup> chlorine contact pipe consists of a 750 mm diameter x 54 m long PVC constructed pressure pipe which provides appropriate contact time to ensure adequate primary disinfection of the water before entering the distribution system.

To ensure water entering the chlorine contact chamber / pipe has sufficient free chlorine there is a post filter sodium hypochlorite system (redundant duty back-up system) to provide trim chlorination as required. If the free chlorine residual drops below an operator specified low set point the post filter sodium hypochlorite chemical system will automatically start to provide a sodium hypochlorite dosage to achieve a specified free chlorine residual set-point. The post filter sodium hypochlorite system is also used to provide primary disinfection when operating in filter bypass or EWSF bypass modes.

A compliance free chlorine residual analyzer is installed after the chlorine contact chamber to ensure water entering the distribution system meets primary disinfection requirements and has a sufficient chlorine to maintain a residual throughout the distribution system. The analyzer is pH compensated and equipped with alarms.

An ammonium sulphate system was installed downstream from the compliance free chlorine analyzer to convert the free chlorine residual to combined chlorine residual before entering the distribution system. The ammonium sulphate chemical addition is fully redundant having a duty backup system consisting of two chemical pumps. After the ammonia injection point there is a total chlorine analyzer to measure and record the total chlorine residual entering the distribution system. The ammonia sulphate solution is stored in a 350 L double walled storage tank. Currently the system is not in use, but may be required if trihalomethane (THM) and/or haloacetic acid (HAA) results increase in the distribution system.

#### Water Storage and Pumping Capabilities

An elevated water storage facility (EWSF) with a tank volume of 650 m<sup>3</sup> was constructed and put into operation on December 16, 2015. The EWSF is located at the South East corner of

### Solution Matachewan Drinking Water System – 2020 Annual/Summary Report

Anita Street and Amabilis Avenue in the community of Matachewan and has approximately two days of water storage. It is used to provide fire storage, equalization storage and emergency storage capability. The EWSF houses a sodium hypochlorite feed system consisting of two metering pumps (one duty and one spare), two sodium hypochlorite tanks and a chlorine residual analyzer. A flow meter, pressure gauge, process piping, valves, controls and instrumentation are also on-site.

#### **Emergency Power**

A 100 KW diesel powered generator is available at the water treatment building and is capable of supplying power to the entire facility during power failures.

A 15 KW diesel generator is also available outside the water tower to provide standby power during emergencies.

#### Distribution System

The Matachewan Drinking Water System is categorized as a Large Municipal Residential Drinking Water System and serves an estimated population of 266 residents. The distribution system consists of approximately 191 active residential service connections and 177 homes. A review of the distribution system drawings indicated that water mains are primarily six, eight and ten inch in diameter and constructed of ductile iron with PVC constructed pipe used in the upgraded sections of Town. Additionally, service connections to private residences consist primarily of ¾ inch copper pipe. There are an estimated 71 fire hydrants connected to the system for fire protection. An auto-flushing device at the end of Rye Street is programmed to flush at a certain time each day for a specified duration to help maintain the quality of the water.

#### 3.0 LIST OF WATER TREATMENT CHEMICALS USED OVER THE REPORTING PERIOD

The following chemicals were used in the treatment process at the Matachewan Water Treatment Plant.

• Sodium hypochlorite – Oxidation and Disinfection

All treatment chemicals meet AWWA and NSF/ANSI standards.

#### 4.0 SIGNIFICANT EXPENSES INCURRED IN THE DRINKING WATER SYSTEM

OCWA is committed to maintaining the assets of the drinking water system and maintains a program of scheduled inspection and maintenance activities using a computerized Work Management System (WMS).

Significant expenses incurred in the drinking water system include:

- The installation of the iron and manganese removal system was completed in December 2019 and put into operation on January 6, 2020.
- Sodium hypochlorite line was permanently installed inside the plant and a fill line for sodium hypochlorite was installed outside the plant.
- Contact pipe flush line permanently installed to outside of building and routed underground as with the flush line to both wells to prevent the erosion of the water plant grounds.
- Reclaim pump installed.
- Replaced two post sodium hypochlorite metering pumps.
- A new transfer switch controller was installed on the generator panel.
- A new gasket was fabricated to repair a leaking pressure vessel.
- Building improvements as part of the upgrade project were completed in 2020.
- The addition of approximately 37 meters of 150mm PVC water main on Roche Street.

#### 5.0 DETAILS ON NOTICES OF ADVERSE TEST RESULTS AND OTHER PROBLEMS REPORTED TO & SUBMITTED TO THE SPILLS ACTION CENTER

Based on information kept on record by OCWA, the Matachewan Drinking Water System was in full compliance in 2020 with no adverse water quality incidents reported to the Ministry's Spills Action Centre.

#### 6.0 MICROBIOLOGICAL TESTING PERFORMED DURING THE REPORTING PERIOD

| Sample Type      | # of<br>Samples | Range of<br>E. coli Results<br>(min to max) | Range of<br>Total Coliform Results<br>(min to max) | # of HPC<br>Samples | Range of<br>HPC Results<br>(min to max) |
|------------------|-----------------|---------------------------------------------|----------------------------------------------------|---------------------|-----------------------------------------|
| Raw (Well No. 1) | 52              | 0 to 0/NDOGN                                | 0 to 0/NDOGN                                       | 0                   | N/A                                     |
| Raw (Well No. 2) | 50*             | 0 to 0                                      | 0 to 3                                             | 0                   | N/A                                     |
| Treated          | 52              | 0 to 0                                      | 0 to 0                                             | 53                  | < 10 to 350                             |
| Distribution     | 104             | 0 to 0                                      | 0 to 0                                             | 52                  | < 10 to > 2000**                        |

#### Summary of Microbiological Data

Maximum Allowable Concentration (MAC) for *E. coli* = 0 Counts/100 mL

MAC for Total Coliforms = 0 Counts/100 mL

NDOGN = No Data, Overgrown with Non-Target

"<" denotes less than the laboratory's method detection limit

">" denotes greater than the laboratory's method detection limit

#### Notes:

- 1. One microbiological sample is collected and tested each week from the raw (each well) and treated water supply. A total of two microbiological samples are collected and tested each week from the Matachewan distribution system. At least 25% of the distribution samples must be tested for HPC bacteria.
- 2. \*Well 2 was taken off-line on December 18, 2020 when the filter system was bypassed due to mechanical failure.
- 3. \*\*High HPC count detected in a distribution water sample collected on March 16<sup>th</sup>. Laboratory confirmed quality control data.

Refer to <u>Appendix A</u> for a monthly summary of microbiological test results.

#### 7.0 OPERATIONAL TESTING PERFORMED DURING THE REPORTING PERIOD

| Parameter              | # of Samples | Range of Results<br>(min to max) | Unit of Measure |
|------------------------|--------------|----------------------------------|-----------------|
| Turbidity (Well No. 1) | 23           | 0.15 to 3.51                     | NTU             |
| Turbidity (Well No. 2) | 23           | 0.26 to 0.75                     | NTU             |

#### Summary of Raw Water Turbidity Data

Note: Turbidity samples are required once every month.

#### **Continuous Monitoring in the Treatment Process**

| Parameter # of Samples |      | Range of Results<br>(min to max) | Unit of<br>Measure | Standard |
|------------------------|------|----------------------------------|--------------------|----------|
| Free Chlorine Residual | 8760 | 0.09 to 5.02                     | mg/L               | CT*      |

#### Notes:

1. For continuous monitors 8760 is used as the number of samples.

 CT is the concentration of chlorine in the water times the time of contact that the chlorine has with the water. It is used to demonstrate the level of disinfection treatment in the water. CT calculations are performed for the Matachewan water plant if the free chlorine residual level drops below 0.15 mg/L to ensure primary disinfection is achieved. On May 28, 2020, the free chlorine dropped for a short duration (0.09 mg/L). A CT calculation was done and met.

#### Summary of Chlorine Residual Data in the Distribution System

| Parameter              | # of Samples | # of Samples Range of Results<br>(min to max) |      | Standard |
|------------------------|--------------|-----------------------------------------------|------|----------|
| Free Chlorine Residual | 367          | 0.28 to 5.7                                   | mg/L | ≥ 0.05   |

Note: A total of seven operational checks for chlorine residual in the distribution system are collected each week. Four (4) samples are tested one day and three (3) on a second day. The sample sets are collected at least 48-hours apart and samples collected on the same day are from different locations.

Refer to Appendix B for a monthly summary of the above operational data.

|   | Date of Sample | Nitrate<br>Result Value | Nitrite<br>Result Value | Unit of Measure | Exceedance |
|---|----------------|-------------------------|-------------------------|-----------------|------------|
|   | January 13     | < 0.05                  | < 0.05                  | mg/L            | No         |
|   | April 14       | 0.19                    | < 0.05                  | mg/L            | No         |
|   | July 14        | 0.32                    | < 0.05                  | mg/L            | No         |
| _ | October 5      | < 0.05                  | < 0.05                  | mg/L            | No         |

#### *Summary of Nitrate & Nitrite Data* (sampled at the plant's point of entry into the distribution every quarter)

Maximum Allowable Concentration (MAC) for Nitrate = 10 mg/L MAC for Nitrite = 1 mg/L

| Date of Sample | Result Value | Unit of<br>Measure | Quarter<br>Average | Running Annual<br>Average | Exceedance |
|----------------|--------------|--------------------|--------------------|---------------------------|------------|
| January 13     | 92.4         | ug/L               |                    |                           |            |
| January 20     | 50.3         | ug/L               | -                  |                           |            |
| January 20     | 70.8         | ug/L               | _                  |                           |            |
| February 18    | 80.3         | ug/L               | _                  |                           |            |
| February 18    | 98.9         | ug/L               | 78.3               |                           |            |
| February 18    | 75.2         | ug/L               | -                  |                           |            |
| March 10       | 81.2         | ug/L               | -                  |                           |            |
| March 10       | 58.0         | ug/L               | -                  |                           |            |
| March 10       | 97.6         | ug/L               | -                  |                           |            |
| April 14       | 67.4         | ug/L               |                    |                           | No         |
| April 20       | 33.9         | ug/L               | -                  | 72.5                      | INO        |
| April 20       | 65.7         | ug/L               | -                  |                           |            |
| May 29         | 42.2         | ug/L               | -                  |                           |            |
| May 29         | 28.9         | ug/L               | 47.8               |                           |            |
| May 29         | 61.8         | ug/L               | -                  |                           |            |
| June 23        | 27.0         | ug/L               | -                  |                           |            |
| June 23        | 45.5         | ug/L               | -                  |                           |            |
| June 23        | 57.4         | ug/L               | -                  |                           |            |
| July 14        | 109          | ug/L               | 109                |                           |            |
| October 5      | 54.8         | ug/L               | 54.8               |                           |            |

#### Summary of Total Trihalomethane Data (additional THM samples collected in 2020)

Maximum Allowable Concentration (MAC) for Total Trihalomethanes = 100 ug/L (Four Quarter Running Average)

#### Note:

\* THM samples are collected and tested quarterly as required under section 13-6 of Schedule 13, under O. Reg. 170/03. Additional distribution sampling was done after the new iron and manganese filtration system was commissioned to determine the location with the highest concentration of THMs.

Three samples were collected each month from January to June at locations near the plant, in the middle of the distribution system and at the end of the distribution system. All results are used to calculate the four quarter running annual average (RAA) for THMs.

|                |              |                    | ·· · · · · · · · · · · · · · · · · | /                         |            |
|----------------|--------------|--------------------|------------------------------------|---------------------------|------------|
| Date of Sample | Result Value | Unit of<br>Measure | Quarter<br>Average                 | Running Annual<br>Average | Exceedance |
| January 13     | 68           | ug/L               |                                    |                           |            |
| January 20     | 39           | ug/L               |                                    | 45.6                      | No         |
| January 20     | 38           | ug/L               | - 52.2                             | 45.0                      | NO         |
| February 18    | 56           | ug/L               |                                    |                           |            |

#### Summary of Total Haloacetic Acid Data (additional HAA samples collected in 2020)

| Date of Sample | Result Value | Unit of<br>Measure | Quarter<br>Average | Running Annual<br>Average | Exceedance |
|----------------|--------------|--------------------|--------------------|---------------------------|------------|
| February 18    | 62           | ug/L               |                    |                           |            |
| February 18    | 44           | ug/L               |                    |                           |            |
| March 10       | 41           | ug/L               |                    |                           |            |
| March 10       | 60           | ug/L               |                    |                           |            |
| March 10       | 62           | ug/L               |                    |                           |            |
| April 14       | 29           | ug/L               | _                  | _                         |            |
| April 20       | 17           | ug/L               | _                  |                           |            |
| April 20       | 39           | ug/L               | _                  |                           |            |
| May 29         | 20           | ug/L               |                    |                           |            |
| May 29         | 20           | ug/L               | 26.0               |                           |            |
| May 29         | 35           | ug/L               | _                  |                           |            |
| June 23        | 15           | ug/L               | _                  |                           |            |
| June 23        | 29           | ug/L               |                    |                           |            |
| June 23        | 30           | ug/L               |                    |                           |            |
| July 14        | 69           | ug/L               | 69                 |                           |            |
| October 5      | 35           | ug/L               | 35                 |                           |            |

#### *Summary of Total Haloacetic Acid Data* (additional HAA samples collected in 2020)

Maximum Allowable Concentration (MAC) for Total Haloacetics Acid = 80 ug/L (Four Quarter Running Average)

#### Note:

\* HAA samples are collected and tested quarterly as required under section 13-6 of Schedule 13, under O. Reg. 170/03. Additional distribution sampling was done after the new iron and manganese filtration system was commissioned to determine the location with the highest concentration of HAAs.

Three samples were collected each month from January to June at locations near the plant, in the middle of the distribution system and at the end of the distribution system. All results are used to calculate the four quarter running annual average (RAA) for HAAs.

#### Summary of Most Recent Lead Data under Schedule 15.1

(applicable to the following drinking water systems; large municipal residential systems, small, municipal residential systems, and non-municipal year-round residential systems)

The Matachewan Drinking Water System was eligible to follow the "Exemption from Plumbing Sampling" as described in section 15.1-5(9) and 15.1-5(10) of Schedule 15.1 of Ontario Regulation 170/03. The exemption applies to a drinking water system if, in two consecutive periods at reduced sampling, not more than 10% of all samples from plumbing exceed the maximum allowable concentration (MAC) of 10 ug/L for lead. As such, the system was required to test for total alkalinity and pH in one distribution sample collected during the periods of December 15 to April 15 (winter period) and June 15 to October 15 (summer period). This testing is required in every 12-month period with lead testing in every third 12-month period.

Two rounds of lead, alkalinity and pH testing were carried out on March 16<sup>th</sup> and September 22<sup>nd</sup> of 2020. Results are summarized in the table below.

| Date of Sample | # of<br>Samples | Field pH | Field Temperature<br>(°C) | Alkalinity<br>(mg/L) | Lead<br>(ug/L) |
|----------------|-----------------|----------|---------------------------|----------------------|----------------|
| March 16       | 1               | 8.11     | 7.4                       | 116                  | 0.1            |
| September 22   | 1               | 7.1      | 11.4                      | 117                  | 6.3            |

#### Summary of Lead Data (sampled in the distribution system)

**Note:** Next lead sampling scheduled for 2023

|           | j            |                 |      |                   | -                   |
|-----------|--------------|-----------------|------|-------------------|---------------------|
| Parameter | Result Value | Unit of Measure | MAC  | MAC<br>Exceedance | ½ MAC<br>Exceedance |
| Antimony  | < 0.5        | ug/L            | 6    | No                | No                  |
| Arsenic   | < 1.0        | ug/L            | 10   | No                | No                  |
| Barium    | 24.0         | ug/L            | 1000 | No                | No                  |
| Boron     | 6.0          | ug/L            | 5000 | No                | No                  |
| Cadmium   | < 0.1        | ug/L            | 5    | No                | No                  |
| Chromium  | < 1.0        | ug/L            | 50   | No                | No                  |
| Mercury   | < 0.1        | ug/L            | 1    | No                | No                  |
| Selenium  | 0.3          | ug/L            | 50   | No                | No                  |
| Uranium   | < 1.0        | ug/L            | 20   | No                | No                  |

#### Most Recent Schedule 23 Inorganic Data Tested at the Water Treatment Plant

**Note:** Sample required every 36 months (sample date = *October 5, 2020).* Next sampling scheduled for October 2023

#### Most Recent Schedule 24 Organic Data Tested at the Water Treatment Plant

| Daramatar                                     | Bosult Value | Unit of | MAC   | MAC        | ½ MAC      |
|-----------------------------------------------|--------------|---------|-------|------------|------------|
| Parameter                                     | Result value | Measure | IVIAC | Exceedance | Exceedance |
| Alachlor                                      | < 0.2        | ug/L    | 5     | No         | No         |
| Atrazine + N-dealkylated<br>metobolites       | < 0.5        | ug/L    | 5     | No         | No         |
| Azinphos-methyl                               | < 0.2        | ug/L    | 20    | No         | No         |
| Benzene                                       | < 0.233      | ug/L    | 1     | No         | No         |
| Benzo(a)pyrene                                | < 0.5        | ug/L    | 0.01  | No         | No         |
| Bromoxynil                                    | < 0.175      | ug/L    | 5     | No         | No         |
| Carbaryl                                      | < 0.1        | ug/L    | 90    | No         | No         |
| Carbofuran                                    | < 0.01       | ug/L    | 90    | No         | No         |
| Carbon Tetrachloride                          | < 0.118      | ug/L    | 2     | No         | No         |
| Chlorpyrifos                                  | < 1.0        | ug/L    | 90    | No         | No         |
| Diazinon                                      | < 2.0        | ug/L    | 20    | No         | No         |
| Dicamba                                       | < 0.2        | ug/L    | 120   | No         | No         |
| 1,2-Dichlorobenzene                           | < 0.175      | ug/L    | 200   | No         | No         |
| 1,4-Dichlorobenzene                           | < 0.175      | ug/L    | 5     | No         | No         |
| 1,2-Dichloroethane                            | < 0.104      | ug/L    | 5     | No         | No         |
| 1,1-Dichloroethylene<br>(vinylidene chloride) | < 0.3        | ug/L    | 14    | No         | No         |

| Parameter                                         | Result Value | Unit of | MAC  | MAC        | ½ MAC      |
|---------------------------------------------------|--------------|---------|------|------------|------------|
| Farameter                                         | Result value | Measure | WIAC | Exceedance | Exceedance |
| Dichloromethane                                   | < 0.3        | ug/L    | 50   | No         | No         |
| 2-4 Dichlorophenol                                | < 0.3        | ug/L    | 900  | No         | No         |
| 2,4-Dichlorophenoxy<br>acetic acid (2,4-D)        | < 0.3        | ug/L    | 100  | No         | No         |
| Diclofop-methyl                                   | < 1.0        | ug/L    | 9    | No         | No         |
| Dimethoate                                        | < 0.2        | ug/L    | 20   | No         | No         |
| Diquat                                            | < 0.444      | ug/L    | 70   | No         | No         |
| Diuron                                            | < 0.148      | ug/L    | 150  | No         | No         |
| Glyphosate                                        | < 0.175      | ug/L    | 280  | No         | No         |
| Malathion                                         | < 0.2        | ug/L    | 190  | No         | No         |
| Methoxychlor                                      | < 6.0        | ug/L    | 900  | No         | No         |
| Metolachlor                                       | < 20.0       | ug/L    | 50   | No         | No         |
| Metribuzin                                        | < 0.175      | ug/L    | 80   | No         | No         |
| Monochlorobenzene                                 | < 0.116      | ug/L    | 80   | No         | No         |
| Paraquat                                          | < 0.116      | ug/L    | 10   | No         | No         |
| Polychlorinated<br>Biphenyls (PCBs)               | < 0.5        | ug/L    | 3.0  | No         | No         |
| Pentachlorophenol                                 | < 0.2        | ug/L    | 60   | No         | No         |
| Phorate                                           | < 0.06       | ug/L    | 2    | No         | No         |
| Picloram                                          | < 0.3        | ug/L    | 190  | No         | No         |
| Prometryne                                        | < 0.116      | ug/L    | 1    | No         | No         |
| Simazine                                          | < 0.104      | ug/L    | 10   | No         | No         |
| Terbufos                                          | < 0.058      | ug/L    | 1    | No         | No         |
| Tetrachloroethylene                               | < 0.175      | ug/L    | 30   | No         | No         |
| 2,3,4,6-<br>Tetrachlorophenol                     | < 0.116      | ug/L    | 100  | No         | No         |
| Triallate                                         | < 0.3        | ug/L    | 230  | No         | No         |
| Trichloroethylene                                 | < 0.2        | ug/L    | 10   | No         | No         |
| 2,4,6-Trichlorophenol                             | < 0.116      | ug/L    | 5    | No         | No         |
| 2-methyl-4-<br>chlorophenoxyacetic<br>acid (MCPA) | < 0.2        | ug/L    | 100  | No         | No         |
| Trifluralin                                       | < 0.2        | ug/L    | 45   | No         | No         |
| Vinyl Chloride                                    | < 7.4        | ug/L    | 1    | No         | No         |

#### Most Recent Schedule 24 Organic Data Tested at the Water Treatment Plant

Note: Sample required every 36 months (sample date = October 5, 2020). Next sampling scheduled for October 2023

## Inorganic or Organic Test Results that Exceeded Half the Standard Prescribed in Schedule 2 of the Ontario Drinking Water Quality Standards.

No inorganic or organic parameter(s) listed in Schedule 23 and 24 of Ontario Regulation 170/03 exceeded half the standard found in Schedule 2 of the Ontario Drinking Water Standard (O. Reg. 169/03) during the reporting period.

### Search Matachewan Drinking Water System – 2020 Annual/Summary Report

| Date of Sample               | # of<br>Samples                                  | Result<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit of<br>Measure | Standard | Exceedance |
|------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|------------|
| October 5, 2020              | 1                                                | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L               | 20       | No         |
| Nata Canada and ta day of CO | which have been been been been been been been be | and the state of t | 0                  |          |            |

#### Most Recent Sodium Data Sampled at the Water Treatment Plant

Note: Sample required every 60 months. Next sampling scheduled for October 2025

#### Most Recent Fluoride Data Sampled at the Water Treatment Plant

| Date of Sample  | # of<br>Samples | Result Value | Unit of<br>Measure | Standard | Exceedance |
|-----------------|-----------------|--------------|--------------------|----------|------------|
| October 5, 2020 | 1               | <0.05        | mg/L               | 1.5      | No         |

Note: Sample required every 60 months. Next sampling scheduled for October 2025

#### Additional Testing Performed in Accordance with an Approval, Order or Legal Instrument

No additional regulatory sampling and testing was required for the Matachewan Drinking Water System during the 2020 reporting period.

Matachewan Drinking Water System

# Schedule 22 2020 SUMMARY REPORT FOR MUNICIPALITIES

### Schedule 22 - SUMMARY REPORTS FOR MUNICIPALITIES

#### **1.0 INTRODUCTION**

| Drinking-Water System Name:                  | Matachewan Drinking Water System      |
|----------------------------------------------|---------------------------------------|
| Municipal Drinking Water Licence (MDWL) No : | 279-101-3 (expired November 23, 2020) |
|                                              | 279-101-4 (issued September 24, 2020) |
| Drinking Water Work Permit (DW/WP) No :      | 279-201-3 (expired November 23, 2020) |
|                                              | 279-201-4 (issued September 24, 2020) |
| Permit to Take Water (PTTW) No.:             | 3106-9E5LKA (issued January 6, 2014)  |
| Period being reported:                       | January 1, 2020 to December 31, 2020  |
|                                              |                                       |

#### 2.0 REQUIREMENTS THE SYSTEM FAILED TO MEET

According to information kept on record by OCWA, the Matachewan Drinking Water System failed to meet the following requirements during the 2020 reporting period:

| Drinking Water                                                         | Requirement(s) the System                                                                                                                                                                                                                                                                                                                                                                                             | Duration                                                                    | Corrective Action(s)                                                                                                                                                                                                                                                                                                                             | Status   |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Legislation                                                            | Failed to Meet                                                                                                                                                                                                                                                                                                                                                                                                        | Duration                                                                    | corrective Action(s)                                                                                                                                                                                                                                                                                                                             | Status   |
| Section 3 (3.2)<br>of PTTW #3106-<br>9E5LKA                            | Well No.1 exceeded its maximum<br>allowable volume limit of 454<br>m3/day several days in May and<br>June (May 24 = 627 m <sup>3</sup> /d, May 25 =<br>545 m <sup>3</sup> /d, May 27 = 473 m <sup>3</sup> /d, May<br>30 = 476 m <sup>3</sup> /d, June 18 = 624 m <sup>3</sup> /d,<br>June 19 = 528 m <sup>3</sup> /d and June 20 =<br>572 m <sup>3</sup> /d) during process issues<br>with the new filtration system. | May 24, 25, 27,<br>30, June 18, 19<br>& 20                                  | The Plant's SCADA was<br>programmed with a set<br>point for both wells to<br>prevent them from running<br>more than the permit to<br>take water allows. When the<br>set point is reached, the<br>original well shuts down and<br>the other well takes over.                                                                                      | Complete |
| Section 3 (3.2)<br>of PTTW #3106-<br>9E5LKA                            | Well No.2 exceeded its maximum<br>allowable flow rate of 1400 (1500)<br>L/minute on December 30th for<br>approximately 2 minutes when<br>testing the valve bank after it was<br>repaired.                                                                                                                                                                                                                             | December 30,<br>2020 from 2:17<br>to 2:18 PM and<br>from 2:47 to<br>2:50 pm | Repairs were completed and flow rate returned to normal.                                                                                                                                                                                                                                                                                         | Complete |
| Section 6-<br>5(1)10(i) of<br>Schedule 6 of<br>O. Regulation<br>170/03 | On 2 occasions during the<br>inspection period, the chlorine<br>analyzer was not calibrated as<br>required (within a +/- 5% accuracy).<br>- On May 26th, 2020, the operator<br>took a handheld residual of 0.56<br>mg/L and recorded the online<br>analyzer as reading 1.94 mg/L.<br>There is no record of a calibration<br>being completed on the analyzer,<br>and;                                                  | December 12,<br>2019 and<br>May 26, 2020                                    | Operators have been<br>trained to ensure that the<br>analyzers are calibrated<br>within +/- 5% accuracy.<br>Operators are to record all<br>hand-held and analyzer<br>readings on the Chlorine<br>Analyzer Verification/<br>Calibration Sheet and in the<br>logbook. They must also<br>indicate when a calibration<br>was performed on this sheet | Complete |

| Drinking Water   | Requirement(s) the System           | Duration       |                                | Chatura  |
|------------------|-------------------------------------|----------------|--------------------------------|----------|
| Legislation      | Failed to Meet                      | Duration       | Corrective Action(s)           | Status   |
|                  | - On December 12th 2019 the         |                | and document calibration       |          |
|                  | operator took a handheld residual   |                | details in the logbook.        |          |
|                  | of 2.2+ mg/L and recorded the       |                | A system has been              |          |
|                  | online analyzer as reading 1.3      |                | implemented so that all        |          |
|                  | mg/L. As described earlier in this  |                | facility sheets, including the |          |
|                  | report, the 2.2+ mg/L is an         |                | Chlorine Analyzer              |          |
|                  | inaccurate reading and the          |                | Verification/ Calibration      |          |
|                  | operating authority indicated that  |                | Sheet will be brought to a     |          |
|                  | the analyzer was calibrated.        |                | designated document            |          |
|                  | These issues were identified in the |                | control person at the end of   |          |
|                  | 2010 2021 MECP Inspection           |                | will onsure all shoots are     |          |
|                  | Report                              |                | received and are complete      |          |
| Section 6-10(1)  | On six (6) occasions from           | November 18    | Training on how to use the     | Complete |
| 2 of Schedule 6  | November 18th, 2019 to January      | 19 & 25, 2019. | pocket colourimeter was        | compiete |
| 2 Of Schedule 0  | 27th. 2020, the free chlorine       | December 2 &   | provided to operators in       |          |
| 170/02           | residual in the distribution system | 9, 2019,       | September 2020.                |          |
| 170/05           | exceeded the upper range of the     | January 27,    |                                |          |
|                  | hand-held colourimeter (2.2 mg/L)   | 2020           | An SOP was developed to        |          |
|                  | and was mistakenly recorded as      |                | clearly indicate how to        |          |
|                  | the actual free chlorine residual.  |                | properly use the pocket        |          |
|                  | This issue was identified in the    |                | colourimeter in low range      |          |
|                  | 2019-2021 MECP Inspection           |                | mode, high range mode and      |          |
|                  | Report.                             |                | if dilutions are needed.       |          |
|                  |                                     |                |                                |          |
| Section 6-1.1(1) | A treated water sample and 2        | December 16,   | A Sample Binder/Calendar       | Complete |
| of Schedule 6 of | distribution water samples were     | 2019           | system was developed and       |          |
| O. Regulation    | collected only 4 days after the     |                | implemented in January         |          |
| 170/03           | samples must be collected no        |                | operators to ensure samples    |          |
|                  | earlier than 5 days and no later    |                | are collected when             |          |
|                  | than 10 days after the previous     |                | scheduled and within the       |          |
|                  | samples.                            |                | required timeframes            |          |
|                  |                                     |                |                                |          |
|                  | On December 16th, 2019 weekly       |                | The laboratory also sends      |          |
|                  | distribution system and treated     |                | sample confirmation reports    |          |
|                  | water samples were taken only 4     |                | to the operating authority     |          |
|                  | days after the previous samples     |                | (OA). The OA reviews these     |          |
|                  | taken on December 12th, 2019 for    |                | reports to ensure all          |          |
|                  | the same purpose.                   |                | samples are collected as       |          |
|                  | This issue was identified in the    |                | review on a check list         |          |
|                  | 2019-2021 MFCP Inspection           |                |                                |          |
|                  | Report.                             |                | Starting in October 2020.      |          |
|                  |                                     |                | operators were instructed      |          |
|                  |                                     |                | to send pictures of the        |          |
|                  |                                     |                | chlorine residual sheets       |          |
|                  |                                     |                | after they recorded their      |          |
|                  |                                     |                | results to a GroupText Chat    |          |
|                  |                                     |                | which is reviewed by all       |          |
|                  |                                     |                | operators, Manager and         |          |

| Drinking Water<br>Legislation | Requirement(s) the System<br>Failed to Meet | Duration | Corrective Action(s)                                                                                                 | Status |
|-------------------------------|---------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------|--------|
|                               |                                             |          | compliance personnel. This<br>sheet also indicates whether<br>distribution bacti samples<br>are collected each week. |        |

#### 3.0 SUMMARY OF FLOWS AND COMPARISON TO REGULATORY LIMITS

#### Flow Monitoring

MDWL No. 279-101 requires the owner to install a sufficient number of flow measuring devices to permit the continuous measurement and recording of:

- the flow rate and daily volume of treated water that flows from the treatment subsystem the distribution system, and
- the flow rate and daily volume of water that flows into the treatment subsystem.

The flow monitoring equipment identified in the MDWL is present and operating as required. These flow meters are calibrated on an annual basis as specified in the manufacturers' instructions.

#### Water Usage

The following water usage tables summarize the quantities and flow rates of water taken and produced during the 2020 reporting period, including total monthly volumes, average monthly volumes, maximum monthly volumes, and maximum flow rates.

#### Raw Water

#### 2020 - Monthly Summary of Water Takings from the Source (Well No. 1 and Well No. 2)

Regulated by Permit to Take Water (PTTW) #3106-9E5LKA, issued January 6, 2014

#### Well No. 1

|                                                          | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Y | ′ear to<br>Date |
|----------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|---|-----------------|
| Total Volume (m <sup>3</sup> )                           | 8319 | 4979 | 5604 | 6606 | 9072 | 9039 | 5596 | 6872 | 5207 | 4922 | 5459 | 7944 | 7 | 79619           |
| Average Volume (m <sup>3</sup> /d)                       | 268  | 172  | 181  | 220  | 293  | 301  | 181  | 222  | 174  | 159  | 182  | 256  |   | 217             |
| Maximum Volume (m³/d)                                    | 453  | 234  | 373  | 369  | 627  | 624  | 322  | 396  | 454  | 298  | 373  | 454  |   | 627             |
| PTTW - Maximum Allowable<br>Volume (m <sup>3</sup> /day) | 454  | 454  | 454  | 454  | 454  | 454  | 454  | 454  | 454  | 454  | 454  | 454  |   | 454             |
| Maximum Flow Rate (L/min)                                | 1256 | 1215 | 1168 | 1198 | 1135 | 1157 | 1266 | 1224 | 1255 | 1241 | 1255 | 1400 |   | 1400            |
| PTTW - Maximum Allowable Flow<br>Rate (L/min)            | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 |   | 1400            |

The system failed to meet the permit to take water (PTTW) limit for Well 1 several days in May (24, 25, 27 & 30) and June (18, 19 & 20) during process issues with the new filtration system. The Plant's SCADA was programmed with a set point for both wells to prevent them from running more than the permit to take water allows. When the set point is reached, the original well shuts down and the other well takes over.

#### Well No. 2

|                                                          | Jan  | Feb  | Mar   | Apr   | May   | Jun  | Jul   | Aug   | Sep   | Oct   | Nov   | Dec  | ſ | Year to<br>Date |
|----------------------------------------------------------|------|------|-------|-------|-------|------|-------|-------|-------|-------|-------|------|---|-----------------|
| Total Volume (m <sup>3</sup> )                           | 2253 | 5158 | 5382  | 4528  | 2159  | 2075 | 5748  | 5967  | 5819  | 4842  | 4953  | 2809 |   | 51692           |
| Average Volume (m <sup>3</sup> /d)                       | 73   | 178  | 173.6 | 150.9 | 69.6  | 69.2 | 185.4 | 192.5 | 194.0 | 156.2 | 165.1 | 90.6 |   | 141.5           |
| Maximum Volume (m³/d)                                    | 307  | 404  | 262   | 338   | 242.4 | 376  | 312   | 395   | 399   | 225   | 321   | 194  |   | 404             |
| PTTW - Maximum Allowable<br>Volume (m <sup>3</sup> /day) | 454  | 454  | 454   | 454   | 454   | 454  | 454   | 454   | 454   | 454   | 454   | 454  |   | 454             |
| Maximum Flow Rate (L/min)                                | 1345 | 1123 | 1117  | 1100  | 1110  | 1129 | 1168  | 1389  | 1159  | 1103  | 1195  | 1536 |   | 1536            |
| PTTW - Maximum Allowable Flow<br>Rate (L/min)            | 1400 | 1400 | 1400  | 1400  | 1400  | 1400 | 1400  | 1400  | 1400  | 1400  | 1400  | 1400 |   | 1400            |

Well 2 failed to meet the PTTW limit on December 30th for approximately 2 minutes when testing the valve bank after it was repaired.

#### Combined Water Taking (Well No. 1 and Well No. 2)

|                                                          | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct  | Nov   | Dec   | Year to<br>Date |
|----------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-----------------|
| Total Volume (m <sup>3</sup> )                           | 10571 | 10137 | 10986 | 11134 | 11231 | 11114 | 11343 | 12840 | 11027 | 9764 | 10412 | 10753 | 131311          |
| Average Volume (m <sup>3</sup> /d)                       | 341   | 350   | 354   | 371   | 362   | 370   | 366   | 414   | 368   | 315  | 347   | 347   | 359             |
| Maximum Volume (m³/d)                                    | 453   | 588   | 391   | 550   | 627   | 818   | 554   | 687   | 779   | 365  | 435   | 454   | 818             |
| PTTW - Maximum Allowable<br>Volume (m <sup>3</sup> /day) | 908   | 908   | 908   | 908   | 908   | 908   | 908   | 908   | 908   | 908  | 908   | 908   | 908             |

The system's Permit to Take Water #3106-9E5LKA, allows the Township to withdraw water at the following rates:

Well No. 1:  $454 \text{ m}^{3}/\text{day}$  1400 L/minute (1500 L/min during pump start-ups and shut downs) Well No. 2:  $454 \text{ m}^{3}/\text{day}$  1400 L/minute (1500 L/min during pump start-ups and shut downs)

Total Combined Daily Volume: 908 m<sup>3</sup>/day

A review of the raw water flow data indicates that the total daily volume of water taken from Well No. 1 exceeded the allowable limit for several days in May and June process issues with the new filtration plant (see comments under Well No. 1 above).

Well 2 failed to meet the PTTW limit on December 30<sup>th</sup> when testing the valve bank after it was repaired.

#### Treated Water

#### 2020 - Monthly Summary of Treated Water Supplied to the Distribution System

Regulated by Municipal Drinking Water Licence (MDWL) #279-101 - Issue 4, effective September 29, 2020

|                                             | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct  | Nov   | Dec   | Year to<br>Date |
|---------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-----------------|
| Total Volume (m <sup>3</sup> )              | 10780 | 10284 | 11130 | 11311 | 11442 | 11382 | 11485 | 12803 | 11202 | 9950 | 10342 | 10907 | 133019          |
| Average Volume (m <sup>3</sup> /d)          | 348   | 355   | 359   | 377   | 369   | 379   | 370   | 413   | 373   | 321  | 345   | 352   | 363             |
| Maximum Volume (m³/d)                       | 468   | 592   | 400   | 562   | 647   | 827   | 557   | 691   | 791   | 371  | 447   | 459   | 827             |
| MDWL - Rated Capacity (m <sup>3</sup> /day) | 908   | 908   | 908   | 908   | 908   | 908   | 908   | 908   | 908   | 908  | 908   | 908   | 908             |

Schedule C, Section 1.0 (1.1) of MDWL No. 279-101 states that the maximum daily volume of treated water that flows from the treatment subsystem to the distribution system shall not exceed 908 m<sup>3</sup>/day. The Matachewan DWS complied with this limit having a recorded maximum volume of 827 m<sup>3</sup>/day on June 17<sup>th</sup> during distribution flushing. This represents 91.1% of the rated capacity.

Figure 1 compares the average and maximum flow rates into the distribution system to the rated capacity of the system identified in the MDWL.

|                                    | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Average Flow (m <sup>3</sup> /day) | 348 | 355 | 359 | 377 | 369 | 379 | 370 | 413 | 373 | 321 | 345 | 352 |
| Maximum Flow (m <sup>3</sup> /day) | 468 | 592 | 400 | 562 | 647 | 827 | 557 | 691 | 791 | 371 | 447 | 459 |
| MDWL - Rated Capacity              | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 |
| % Rated Capacity                   | 52  | 65  | 44  | 62  | 71  | 91  | 61  | 76  | 87  | 41  | 49  | 51  |

#### Figure 1: 2020 - Comparison of Treated Water Flows to the Rated Capacity



#### Summary of System Performance

The following information is provided to enable the Owner to assess the capability of the system to meet existing and future water usage needs.

| Rated Capacity of the Plant (MDWL)   | 908 m <sup>3</sup> /day |                              |
|--------------------------------------|-------------------------|------------------------------|
| Average Daily Flow for 2020          | 363m <sup>3</sup> /day  | 39.9 % of the rated capacity |
| Maximum Daily Flow for 2020          | 827 m <sup>3</sup> /day | 91.1 % of the rated capacity |
| Total Treated Water Produced in 2020 | 133,019 m <sup>3</sup>  |                              |

#### **Historical Flows**

#### Matachewan Water Treatment Plant – Historical Flow Comparison

| Year | <b>Maximum Treated Flow</b><br>(m <sup>3</sup> /d) | Average Daily Treated Flow<br>(m <sup>3</sup> /d) | Average Day % of Rated<br>Capacity<br>(908 m <sup>3</sup> /d) |
|------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|
| 2020 | 827                                                | 363                                               | 39.9%                                                         |
| 2019 | 995                                                | 308                                               | 33.9%                                                         |
| 2018 | 850                                                | 243                                               | 26.8%                                                         |
| 2017 | 955                                                | 201                                               | 22.1%                                                         |
| 2016 | 724                                                | 205                                               | 22.6%                                                         |

Figure 2 compares the average treated water flows from 2016 to 2020.

#### Figure 2 - Historical Water Usage Trends (2016 to 2020)

|                                             | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|---------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2016 Average Flow (m <sup>3</sup> /day)     | 239 | 270 | 276 | 225 | 207 | 190 | 193 | 206 | 145 | 161 | 162 | 188 |
| 2017 Average Flow (m <sup>3</sup> /day)     | 209 | 209 | 204 | 191 | 181 | 218 | 276 | 174 | 138 | 165 | 191 | 207 |
| 2018 Average Flow (m <sup>3</sup> /day)     | 234 | 236 | 240 | 224 | 233 | 268 | 334 | 234 | 192 | 228 | 239 | 255 |
| 2019 Average Flow (m <sup>3</sup> /day)     | 260 | 309 | 341 | 478 | 255 | 252 | 372 | 300 | 284 | 231 | 278 | 331 |
| 2020 Average Flow (m <sup>3</sup> /day)     | 348 | 355 | 359 | 377 | 369 | 379 | 370 | 413 | 373 | 321 | 345 | 352 |
| MDWL - Rated Capacity (m <sup>3</sup> /day) | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 |
|                                             |     |     |     |     |     |     |     |     |     |     |     |     |



### CONCLUSION

The water quality data collected in 2020 demonstrates that the Matachewan drinking water system provided high quality drinking water to its users which met all the Ontario Drinking Water Standards. The system experienced a few non-compliance issues which were resolved.

The system failed to meet the water taking limit of its Permit to Take Water (PTTW) several days during the reporting period during process issues with the new filtration plant.

The drinking water system is maintained by OCWA with continual improvements and programs in place to ensure water of the highest quality.

## **APPENDIX A**

Monthly Summary of Microbiological Test Results

| MATACHEWAN DRINKING WATER SYSTEM             |
|----------------------------------------------|
| 2020 SUMMARY OF MICROBIOLOGICAL TEST RESULTS |

| Facility Works Number:   |
|--------------------------|
| Facility Owner:          |
| Facility Classification: |

Municipality: Township of Matachewan Class 1 Water Treatment

220003653

| RAW WATER                                            |           | 01/2020  |        | 02/2020 |           | 03/2020 | 04   | 4/2020 |      | 05/2020 | - ( | 06/2020  | 07/202 | 20 | 08/2020 |     | 09/2020  | 10/2020 | 11/2020 | 12 | 2/2020 | Total |    | Avg     | Max  | Min |
|------------------------------------------------------|-----------|----------|--------|---------|-----------|---------|------|--------|------|---------|-----|----------|--------|----|---------|-----|----------|---------|---------|----|--------|-------|----|---------|------|-----|
| Well 1 / Total Coliform: TC - cfu/100mL              |           |          |        |         |           |         |      |        |      |         |     |          |        |    |         |     |          |         |         |    |        |       |    |         |      | 1   |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      |      | 4       |     | 5        | 4      |    | 5       |     | 4        | 4       | 5       |    | 4      | 52    | 2  |         |      |     |
| Max Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       | 0   | /NDOGN   | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         | 0    |     |
| Mean Lab                                             |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    | 0       |      |     |
| Min Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         |      | 0   |
| Well 1 / E. Coli: EC - cfu/100mL                     |           |          |        |         |           |         |      |        |      |         |     |          |        |    |         |     |          |         |         |    |        |       |    |         |      |     |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      |      | 4       |     | 5        | 4      |    | 5       |     | 4        | 4       | 5       |    | 4      | 52    | 2  |         |      |     |
| Max Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       | 0   | /NDOGN   | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         | 0    |     |
| Mean Lab                                             |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    | 0       |      |     |
| Min Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         |      | 0   |
| Well 2 / Total Coliform: TC - cfu/100mL              |           |          |        |         |           |         |      |        |      |         |     |          |        |    |         |     |          |         |         |    |        |       |    |         |      |     |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      |      | 4       |     | 5        | 4      |    | 5       |     | 4        | 4       | 5       |    | 2      | 50    | D  |         |      |     |
| Max Lab                                              |           | 3        |        | 3       |           | 1       |      | 0      |      | 2       |     | 3        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         | 3    |     |
| Mean Lab                                             |           | 0.75     |        | 1.25    |           | 0.2     |      | 0      |      | 0.5     |     | 0.6      | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    | 0.28    |      |     |
| Min Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         |      | 0   |
| Well 2 / E. Coli: EC - cfu/100mL                     |           |          |        |         |           |         |      |        |      |         |     |          |        |    |         |     |          |         |         |    |        |       |    |         |      |     |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      |      | 4       |     | 5        | 4      |    | 5       |     | 4        | 4       | 5       |    | 2      | 50    | D  |         |      |     |
| Max Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         | 0    |     |
| Mean Lab                                             |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    | 0       |      |     |
| Min Lab                                              | $\square$ | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       | 1   | 0        | 0       | 0       |    | 0      |       |    |         |      | 0   |
|                                                      |           |          |        |         |           | -       |      |        |      |         | +   | -        | 1      |    | -       |     | -        | -       | -       | 1  | -      | 1     |    |         |      | Ĭ   |
| TREATED WATER                                        |           | 01/2020  |        | 02/2020 | <u> </u>  | 03/2020 | <br> | 4/2020 | - I. | 05/2020 |     | 06/2020  | 07/203 | 20 | 08/2020 |     | 09/2020  | 10/2020 | 11/2020 | 1: | 2/2020 | Total |    | Ava     | Max  | Min |
| Treated Water (POE) / Total Coliform: TC - cfu/100ml |           | 0 172020 |        | 5212020 |           | 53/2020 |      |        |      | 55/2020 | 1   | 00,2020  | 017202 |    | 30/2020 | 1   | - 5/2020 |         |         | 14 |        | routi |    |         | .man |     |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      |      | 4       |     | 5        | 4      |    | 5       |     | 4        | 4       | 5       | -  | 4      | 50    |    |         |      |     |
| Max Lab                                              | +         | +        | +      | +       | $\vdash$  | 0       | _    | -      | +    | -       |     | 0        | 4      |    | 0       | -   | -        | -       | 0       | +  | 0      | 54    | ++ |         | 0    |     |
| Mean Lab                                             | +         | 0        | +      | 0       |           | 0       | _    | 0      | +    | 0       | +   | 0        | 0      |    | 0       | -   | 0        | 0       | 0       | +  | 0      | 1     | ++ | 0       | U    |     |
| Min Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      | -    | 0       | -   | 0        | 0      | -  | 0       |     | 0        | 0       | 0       |    | 0      |       |    | 0       |      | 0   |
| Tracted Water (POE) / E_Coli: EC_cfu/100ml           |           | 0        |        | 0       |           | 0       | _    | 0      |      | 0       | -   | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         |      | 0   |
| Count Lob                                            |           | 4        |        | 4       |           | E       |      | 4      |      | 4       |     | =        | 4      |    | 5       |     | 4        | 4       | 5       |    | 4      | E'    | 2  |         |      |     |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      |      | 4       | _   | 5        | 4      | _  | 5       |     | 4        | 4       | 5       | -  | 4      | 54    | 2  |         | 0    |     |
| Max Lab                                              |           | 0        |        | 0       |           | 0       | _    | 0      | -    | 0       | _   | 0        | 0      | _  | 0       |     | 0        | 0       | 0       | _  | 0      |       |    |         | 0    |     |
| Mialab                                               |           | 0        |        | 0       |           | 0       | _    | 0      | -    | 0       | _   | 0        | 0      | _  | 0       |     | 0        | 0       | 0       | _  | 0      |       |    | U       |      | 0   |
| Min Lab                                              |           | U        |        | U       |           | U       |      | 0      |      | U       |     | U        | 0      |    | U       |     | 0        | U       | 0       |    | U      |       |    |         |      | U   |
| Count Lab                                            |           |          |        | 4       |           | 6       |      | 4      |      | 4       |     | 5        |        |    | 6       |     | 4        |         | E       | -  | 4      | 51    |    |         |      |     |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      |      | 4       |     | 5        | 4      | _  | 5       |     | 4        | 4       | 5       | -  | 4      | 54    | 2  |         | 250  |     |
| Max Lab                                              | <         | 10       | <      | 10      |           | 160     |      | 350    |      | 130     | <   | 50 <     | 10     | -  | 20      | <   | 40 <     | 10      | < 70    | -  | 40     |       |    | 10.100  | 350  |     |
| Mean Lab                                             | <         | 10       | <      | 10      |           | 112     | -    | 1/7.5  | <    | 42.5    | <   | 28 <     | 10     | -  | 12      | <   | 17.5 <   | 10      | < 28    | <  | 20     |       | <  | 40.192  |      | 10  |
| Min Lab                                              | <         | 10       | <      | 10      |           | 60      |      | 80     | <    | 10      | <   | 10 <     | 10     | -  | 10      | <   | 10 <     | 10      | < 10    | <  | 10     |       |    |         | <    | 10  |
|                                                      |           |          |        |         |           |         |      |        |      |         | _   |          |        |    |         |     |          |         |         |    |        |       |    |         |      |     |
| DISTRIBUTION WATER                                   |           | 01/2020  | -      | 02/2020 | _         | 03/2020 | 04   | 4/2020 |      | 05/2020 |     | 06/2020  | 07/202 | 20 | 08/2020 | - 1 | 09/2020  | 10/2020 | 11/2020 | 12 | 2/2020 | Iotal |    | Avg     | Max  | Min |
| MW-3 (Bacti) / Total Coliform: TC - cfu/100mL        |           |          |        |         |           |         | _    |        |      |         |     |          |        |    |         |     |          |         |         | _  |        |       |    |         |      |     |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      | _    | 4       | _   | 5        | 4      | _  | 5       |     | 4        | 4       | 5       | _  | 4      | 52    | 2  |         |      |     |
| Max Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       | _   | 0        | 0      |    | 0       |     | 0        | 0       | 0       | _  | 0      |       |    |         | 0    |     |
| Mean Lab                                             |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       | _   | 0        | 0      |    | 0       |     | 0        | 0       | 0       | _  | 0      |       |    | 0       |      |     |
| Min Lab                                              |           | 0        |        | 0       |           | 0       | _    | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         |      | 0   |
| MW-3 (Bacti) / E. Coli - cfu/100mL                   |           |          |        |         |           |         |      |        |      |         |     |          |        |    |         |     |          |         |         |    |        |       |    |         |      |     |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      |      | 4       |     | 5        | 4      |    | 5       |     | 4        | 4       | 5       |    | 4      | 52    | 2  |         |      |     |
| Max Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         | 0    |     |
| Mean Lab                                             | $\square$ | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      | -     | ++ | 0       |      |     |
| Min Lab                                              | $\square$ | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       | _   | 0        | 0       | 0       |    | 0      | -     | +  |         |      | 0   |
| MW-3 (Bacti) / HPC - cfu/mL                          |           |          |        |         |           |         |      |        |      |         |     |          |        |    |         |     |          |         |         |    |        |       | +  |         |      |     |
| Count Lab                                            | $\square$ | 2        |        | 2       | $\square$ | 1       | _    | 2      |      | 3       |     | 2        | 2      |    | 3       |     | 1        | 2       | 3       | _  | 2      | 25    | 5  |         |      |     |
| Max Lab                                              | <         | 10       | <      | 10      | <         | 10      | <    | 10     | <    | 10      | <   | 10 <     | 10     |    | 20      | <   | 10 <     | 10      | < 100   |    | 60     | -     | +  |         | 100  |     |
| Mean Lab                                             | <         | 10       | <      | 10      | <         | 10      | <    | 10     | <    | 10      | <   | 10 <     | 10     | -  | 13.333  | <   | 10 <     | 10      | < 40    | <  | 35     | -     | <  | 16      |      |     |
| Min Lab                                              | <         | 10       | <      | 10      | <         | 10      | <    | 10     | <    | 10      | <   | 10 <     | 10     | -  | < 10    | <   | 10 <     | 10      | < 10 ·  | <  | 10     |       |    |         | <    | 10  |
| MW-4 (Bacti) / Total Coliform: TC - cfu/100mL        |           |          |        |         |           |         |      |        |      |         |     |          |        |    |         |     |          |         |         |    |        |       |    |         |      |     |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      |      | 4       |     | 5        | 4      |    | 5       |     | 4        | 4       | 5       |    | 4      | 52    | 2  |         |      |     |
| Max Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         | 0    |     |
| Mean Lab                                             |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    | 0       |      |     |
| Min Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         |      | 0   |
| MW-4 (Bacti) / E. Coli - cfu/100mL                   |           |          |        |         |           |         |      |        |      |         |     |          |        |    |         |     |          |         |         |    |        |       |    |         |      |     |
| Count Lab                                            |           | 4        |        | 4       |           | 5       |      | 4      |      | 4       |     | 5        | 4      |    | 5       |     | 4        | 4       | 5       |    | 4      | 52    | 2  |         |      |     |
| Max Lab                                              |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         | 0    |     |
| Mean Lab                                             |           | 0        |        | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    | 0       |      |     |
| Min Lab                                              |           | 0        | $\Box$ | 0       |           | 0       |      | 0      |      | 0       |     | 0        | 0      |    | 0       |     | 0        | 0       | 0       |    | 0      |       |    |         |      | 0   |
| MW-4 (Bacti) / HPC - cfu/mL                          |           |          |        |         |           |         |      |        |      |         |     |          |        |    |         |     |          |         |         |    |        |       |    |         |      |     |
| Count Lab                                            |           | 2        |        | 2       |           | 4       |      | 2      |      | 1       |     | 3        | 2      |    | 2       |     | 3        | 2       | 2       |    | 2      | 27    | 7  |         |      |     |
| Max Lab                                              |           | 20       |        | 40      | >         | 2000*   |      | 40     |      | 10      |     | 60       | 50     |    | 230     |     | 120      | 50      | 20      |    | 30     |       |    |         | 2000 |     |
| Mean Lab                                             | <         | 15       | <      | 25      | >         | 530     |      | 35     |      | 10      | <   | 26.667 < | 30     |    | 135     |     | 70       | 40      | < 15    | <  | 20     |       |    | 112.963 |      |     |
| Min Lab                                              | <         | 10       | <      | 10      | <         | 10      |      | 30     |      | 10      | <   | 10 <     | 10     |    | 40      |     | 10       | 30      | < 10    | <  | 10     |       |    |         | <    | 10  |
|                                                      |           |          |        |         |           |         |      |        |      |         |     |          |        |    |         |     |          |         |         |    |        |       |    |         |      | _   |

NOTES: NDOGN = No Data, Overgrown with Non-Target \*High HPC count detected in a distribution water sample collected on March 16th. Laboratory confirmed quality control data.

## **APPENDIX B** Monthly Summary of Operational Data

### MATACHEWAN DRINKING WATER SYSTEM 2020 SUMMARY OF OPERATIONAL TEST RESULTS

Facility Works Number: Facility Owner: Facility Classification:

Municipality: Township of Matachewan Class 1 Water Treatment

220003653

| RAW WATER                                                  | 01/2020 | 02/2020 | 03/2020 | 04/2020 | 05/2020 | 06/2020 | 07/2020 | 08/2020 | 09/2020 | 10/2020 | 11/2020 | 12/2020 | Total  | Avg   | Max  | Min  |
|------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|-------|------|------|
| Well 1 / Turbidity - NTU                                   |         |         |         |         |         |         |         |         |         |         |         |         |        |       |      |      |
| Count IH                                                   | 2       | 2       | 2       | 2       | 2       | 2       | 2       | 2       | 2       | 1       | 2       | 2       | 23     |       |      |      |
| Total IH                                                   | 0.668   | 0.73    | 0.835   | 4.79    | 0.36    | 0.32    | 2.73    | 0.653   | 0.301   | 0.34    | 0.78    | 1.27    | 13.777 |       |      |      |
| Max IH                                                     | 0.35    | 0.49    | 0.485   | 3.51    | 0.19    | 0.17    | 1.39    | 0.41    | 0.151   | 0.34    | 0.41    | 0.65    |        |       | 3.51 |      |
| Mean IH                                                    | 0.334   | 0.365   | 0.418   | 2.395   | 0.18    | 0.16    | 1.365   | 0.327   | 0.151   | 0.34    | 0.39    | 0.635   |        | 0.599 |      |      |
| Min IH                                                     | 0.318   | 0.24    | 0.35    | 1.28    | 0.17    | 0.15    | 1.34    | 0.243   | 0.15    | 0.34    | 0.37    | 0.62    |        |       |      | 0.15 |
| Well 2 / Turbidity - NTU                                   |         |         |         |         |         |         |         |         |         |         |         |         |        |       |      |      |
| Count IH                                                   | 2       | 2       | 2       | 2       | 2       | 2       | 2       | 2       | 2       | 1       | 2       | 2       | 23     |       |      |      |
| Total IH                                                   | 0.925   | 0.71    | 0.805   | 1.139   | 1.2     | 0.69    | 0.901   | 0.757   | 0.669   | 0.51    | 1.19    | 1.47    | 10.966 |       |      |      |
| Max IH                                                     | 0.48    | 0.45    | 0.445   | 0.75    | 0.62    | 0.35    | 0.459   | 0.48    | 0.409   | 0.51    | 0.61    | 0.75    |        |       | 0.75 |      |
| Mean IH                                                    | 0.463   | 0.355   | 0.402   | 0.57    | 0.6     | 0.345   | 0.451   | 0.379   | 0.335   | 0.51    | 0.595   | 0.735   |        | 0.477 |      |      |
| Min IH                                                     | 0.445   | 0.26    | 0.36    | 0.389   | 0.58    | 0.34    | 0.442   | 0.277   | 0.26    | 0.51    | 0.58    | 0.72    |        |       |      | 0.26 |
|                                                            |         |         |         |         |         |         |         |         |         |         |         |         |        |       |      |      |
| TREATED WATER                                              | 01/2020 | 02/2020 | 03/2020 | 04/2020 | 05/2020 | 06/2020 | 07/2020 | 08/2020 | 09/2020 | 10/2020 | 11/2020 | 12/2020 | Total  | Avg   | Max  | Min  |
| Treated Water (POE) / CI Residual: Free (0.15 mg/L) - mg/L |         |         |         |         |         |         |         |         |         |         |         |         |        |       |      |      |
| Max OL                                                     | 3.47    | 3.926   | 2.545   | 4.015   | 5.007   | 5.005   | 5.016   | 5.015   | 5.016   | 4.136   | 5.015   | 5.02    |        |       | 5.02 |      |
| Mean OL                                                    | 1.68    | 1.644   | 1.469   | 1.499   | 1.733   | 1.918   | 2.437   | 2.485   | 2.508   | 1.804   | 1.987   | 2.314   |        | 1.957 |      |      |
| Min OL                                                     | 0.551   | 0.217   | 0.559   | 0.421   | 0.09    | 0.27    | 0.414   | 0.592   | 0.666   | 0.746   | 0.468   | 0.201   |        |       |      | 0.09 |
|                                                            |         |         |         |         |         |         |         |         |         |         |         |         |        |       |      |      |
| TREATED WATER                                              | 01/2020 | 02/2020 | 03/2020 | 04/2020 | 05/2020 | 06/2020 | 07/2020 | 08/2020 | 09/2020 | 10/2020 | 11/2020 | 12/2020 | Total  | Avg   | Max  | Min  |
| Residual No. 1 / CI Residual: Free - mg/L                  |         |         |         |         |         |         |         |         |         |         |         |         |        |       |      |      |
| Count IH                                                   | 9       | 8       | 9       | 9       | 8       | 9       | 9       | 9       | 8       | 9       | 9       | 9       | 105    |       |      |      |
| Max IH                                                     | 2.2     | 1.5     | 1.08    | 1.41    | 1.73    | 3.08    | 2.17    | 2.19    | 2.02    | 1.91    | 1.71    | 5.7     |        |       | 5.7  |      |
| Mean IH                                                    | 1.169   | 0.916   | 0.728   | 1.003   | 1.086   | 1.571   | 1.31    | 1.561   | 1.426   | 1.05    | 0.886   | 1.8     |        | 1.211 |      |      |
| Min IH                                                     | 0.52    | 0.54    | 0.4     | 0.62    | 0.54    | 1       | 0.85    | 1.1     | 0.96    | 0.68    | 0.55    | 0.58    |        |       |      | 0.4  |
| Residual No. 2 / CI Residual: Free - mg/L                  |         |         |         |         |         |         |         |         |         |         |         |         |        |       |      |      |
| Count IH                                                   | 9       | 8       | 9       | 9       | 8       | 9       | 9       | 9       | 8       | 9       | 9       | 9       | 105    |       |      |      |
| Max IH                                                     | 2.05    | 1.23    | 5       | 1.77    | 1.8     | 2.78    | 1.7     | 2.17    | 1.96    | 1.85    | 2.08    | 5.3     |        |       | 5.3  |      |
| Mean IH                                                    | 1.17    | 0.755   | 1.493   | 0.978   | 1.02    | 1.388   | 1.196   | 1.337   | 1.291   | 0.961   | 1.077   | 1.672   |        | 1.2   |      |      |
| Min IH                                                     | 0.57    | 0.44    | 0.71    | 0.55    | 0.46    | 0.78    | 0.96    | 0.83    | 0.87    | 0.68    | 0.65    | 0.59    |        |       |      | 0.44 |
| Residual No. 3 / Cl Residual: Free - mg/L                  |         |         |         |         |         |         |         |         |         |         |         |         |        |       |      |      |
| Count IH                                                   | 9       | 8       | 9       | 9       | 8       | 9       | 9       | 9       | 8       | 9       | 9       | 9       | 105    |       |      |      |
| Max IH                                                     | 2.2     | 1.35    | 1.47    | 1.33    | 1.78    | 1.72    | 1.84    | 1.37    | 2.42    | 2.8     | 1.46    | 4.2     |        |       | 4.2  |      |
| Mean IH                                                    | 1.17    | 1.014   | 1.014   | 0.897   | 0.963   | 1.284   | 1.333   | 1.073   | 1.393   | 1.282   | 1.029   | 1.937   |        | 1.201 |      |      |
| Min IH                                                     | 0.53    | 0.71    | 0.84    | 0.57    | 0.51    | 0.98    | 0.92    | 0.6     | 0.9     | 0.68    | 0.8     | 0.4     |        |       |      | 0.4  |
| Residual No. 4 / CI Residual: Free - mg/L                  |         |         |         |         |         |         |         |         |         |         |         |         |        |       |      |      |
| Count IH                                                   | 4       | 4       | 5       | 4       | 4       | 5       | 4       | 5       | 4       | 4       | 5       | 4       | 52     |       |      |      |
| Max IH                                                     | 1.5     | 1.49    | 1.13    | 1.02    | 1.32    | 1.59    | 2.03    | 1.6     | 2.85    | 1.4     | 1.79    | 2.4     |        |       | 2.85 |      |
| Mean IH                                                    | 1.185   | 1.285   | 0.928   | 0.75    | 0.878   | 1.222   | 1.938   | 1.208   | 2.12    | 1.16    | 1.318   | 1.285   |        | 1.265 |      |      |
| Min IH                                                     | 0.74    | 0.99    | 0.58    | 0.5     | 0.28    | 1.01    | 1.77    | 0.77    | 1.44    | 0.73    | 0.68    | 0.68    |        |       |      | 0.28 |

NOTES:

CT is the concentration of chlorine in the water times the time of contact that the chlorine has with the water. It is used to demonstrate the level of disinfection treatment in the water. CT calculations are calculations are performed for the Matachewan water plant if the free chlorine residual level drops below 0.15 mg/L to ensure primary disinfection is achieved. On May 28, 2020, the free chlorine dropped for a short duration (0.09 mg/L). A CT calculation was done and met.

The filter was taken out of service from December 18 to December 30. During this time, the CT calculation is performed if the free chlorine concentration drops below 0.28 mg/L. No CT calculations were required during this time, the CT calculation is performed if the free chlorine concentration drops below 0.28 mg/L. No CT calculations were required during this time, the CT calculation is performed if the free chlorine concentration drops below 0.28 mg/L.